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Following a brief overview of current knowledge on lattices of subgroups of the

space groups, it is shown that in the case of reducible space groups those lattices

contain sublattices which are lattice isomorphic to the lattices of subgroups of

layer and rod groups. Both sublattices involve the sublattice consisting of

equitranslational subgroups.

1. Introduction

The bulk of the theory of space-group subgroups has been for

a long time based on the well known Hermann theorem

(Hermann, 1929), which can be viewed as a special case of

the diamond isomorphism theorem of algebra (McLane &

Birkhoff, 1967). Let us recall its formulation with reference

to subgroups of the space groups: ‘A subgroup of a space

group is an equiclass subgroup of a certain equitranslational

subgroup’. In the early papers in the field, the maximal

equitranslational (translationengleiche) subgroups and the

maximal equiclass (klassengleiche) subgroups were listed

(Neubüser & Wondratschek, 1966; Boyle & Lawrenson,

1972a,b). Ascher contributed to the subject by using an alge-

braic concept of a lattice (Birkhoff, 1948) for the description of

equitranslational subgroups of the space groups (Ascher,

1968). The lattices of subgroups of the point groups were also

given by Kopský (1982). The information on maximal

isomorphic and non-isomorphic equiclass subgroups of the

space groups is provided in the editions of Volume A of

International Tables for Crystallography (ITC) that have been

published since 1983 (Hahn, 1983); analogous information on

such subgroups of frieze, layer and rod groups is given in

Volume E of ITC (Kopský & Litvin, 2010). These contribu-

tions give incomplete information only. Ascher’s lattices show

the type of the subgroup but not the exact subgroup and the

same concerns Volumes A and E. The first lattices in which the

location of equitranslational subgroups is specified are a part

of the CD ROM published as the electronic supplement to

Volume D of ITC (Kopský & Boček, 2003). We note that

maximal subgroups of layer and rod groups up to index 4 can

be found on the Bilbao Crystallographic Server (http://www.

cryst.ehu.es). The subgroups are presented by means of

transformation matrices there. The concept of the group

location is consistently used in the specification of standards of

the frieze, layer and rod groups as well as in the ‘Scanning

tables’ of Volume E. The latest progress of the theory and

information on subgroups of the space groups is manifested in

the first edition of Volume A1 of ITC (Wondratschek &

Müller, 2004). The volume already takes into account the

location of subgroups, and some important lattices are

presented there. As an artefact of crystallographic philosophy,

Volume A1 describes the shift of origin instead of a more

appropriate shift of the subgroup itself. In this contribution we

consider the correlation of lattices of subgroups of subperiodic

groups with lattices of subgroups of the reducible space

groups.

1.1. Terminological comments

(i) The subgroups of a given group constitute a partially

ordered set in which both supremum and infinum with respect

to the partial ordering on the set exist for any non-empty finite

subset of its elements. In algebra such a set is called a lattice.

Unfortunately, English is one of a few European languages in

which the term clashes with the crystallographic concept of a

vector or a point lattice. The authors of Volume A1 use the

term ‘graph’, which does not include all lattice properties; the

term ‘tree’ would be completely unacceptable because it

denotes a graph without cycles (Ore, 1962).

The table below offers terms in several European languages

both for a lattice in a set-theoretical sense and for a lattice as

the normal translation subgroup of a space group.

Besides, we also prefer the terms ‘equiclass’ and ‘equi-

translational subgroups’ to ‘klassengleiche’ and ‘translation-

engleiche’.

(ii) For any two subgroups F and K of a group G, the groups

supfF;Kg and inffF;Kg are called the group-theoretical union



and the intersection of F and K, respectively; only the latter

coincides with its set-theoretical analogue, inffF;Kg ¼ F \ K.

The group-theoretical union of F and K contains all finite

products of operations belonging to F or to K; yet we prefer to

denote it by F [ K.

2. Beyond the theorem by Hermann

We shall commence this contribution by a formulation of that

theorem (Hall, 1959; McLane & Birkhoff, 1967) of which the

Hermann theorem is a particular case.

Theorem 2.1. The diamond isomorphism theorem for groups.

Let G be a group and H its normal subgroup. If F is any other

subgroup of the group G, then F [H ¼ FH, and the factor

groups FH=H and F=ðF \HÞ are isomorphic.

Notes. (i) Since H is normal in G, then hf ¼ fh0,

h0 ¼ f�1hf 2 H, for any f 2 F and any h 2 H. An element

f1h1f2h2 . . . fshs 2 F [H equals f1f2 . . . fsh1;2;...;s 2 FH with

h1;2;...;s 2 H. (F [H contains all elements of the form

f1h1 . . . fshs where the operations f1; . . . ; fs 2 F as well as

the operations h1; . . . ; hs 2 H need not be all distinct.)

(ii) The isomorphism ’ : FH=H ! F=ðF \HÞ is given by

fH ! f ðF \HÞ, f 2 F.

If G ¼ G is a space group, then setting H ¼ T for its

maximal translation subgroup, one obtains Hermann’s

theorem as a corollary. The corollary of the diamond

isomorphism theorem is applicable, in general, to Euclidean

groups, and in particular to subperiodic groups. The term

‘diamond’ refers to the shape of the illustrative diagram (see

Fig. 1). Some authors speak of the second isomorphism

theorem.

3. Lattice isomorphisms

Let us recall that a lattice L is a partially ordered set, i.e. such a

set in which for some elements a and b there is defined an

ordering relation �: either a � b or b � a. In addition, for any

two elements a; b there exist their least upper bound and their

greatest lower bound with respect to �, denoted by a _ b and

a ^ b, respectively. The binary operations of _ and ^ are

called, respectively, join and meet (Birkhoff, 1948). All

elements c such that b � c � a form a sublattice of L, called a

quotient Lða; bÞ (Hall, 1959), or an interval ½a; b� (Burris &

Sankappanavar, 1981). We prefer the former term to the latter

since, in general, such sublattice need not be well ordered.

The set fF;K; . . . ; g of subgroups of a group G forms a

lattice LðGÞ with respect to the ordinary group–subgroup

relation, identical with the set-theoretical inclusion �.

Analogues of the abstract lattice binary operations of join and

meet are the group-theoretical union, denoted by [, and the

usual set-theoretical intersection \. Similarly to the definition

above, the quotient sublattice LðG; FÞ of LðGÞ consists of all

subgroups K of G containing F. Hence, if F � H � G then

LðG; FÞ � LðG; HÞ.

Definition 3.1. Two lattices are said to be lattice isomorphic if

there exists a bijection which preserves inclusion relations

and/or maps group-theoretical unions and intersections onto

group-theoretical unions and intersections, respectively.

Theorem 3.1. Lattice isomorphism induced by a normal

subgroup. Consider a group G and its normal subgroup H.

Then the lattice LðHÞ of subgroups of the factor group

H ¼ G=H is isomorphic to the quotient LðG; HÞ of the lattice

LðGÞ.

Note. The lattice isomorphism � : LðG; HÞ ! LðHÞ is given

by K! K ¼ K=H for any group K, H � K � G.

Corollary 3.1. Suppose G is a crystallographic point group, and

G is a space group in the geometric class G. Let LðGÞ and LðGÞ

denote the lattice of subgroups of G and G, respectively. Then,

equitranslational subgroups of G form a quotient sublattice

LðG; TÞ of LðGÞ which is lattice isomorphic to the lattice LðGÞ.

4. Euclidean groups as groups of operators on Euclidean
space

Following the cohomology approach of Ascher & Janner

(1965, 1968) in its simplified form, we first formulate a

theorem which is a good starting point for general consid-

erations of Euclidean groups.

Theorem 4.1. Fundamental theorem on Euclidean groups.

Every Euclidean group can be expressed by a symbol:

G ¼ fG;TG;P; uGg;

where P is an origin of the coordinate system, G is a point

group, TG ¼ G \ V is the maximal (G-invariant) translation

subgroup of G, V is the Euclidean vector space viewed as the

group of all translations, and uG : G! V is called the system
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Figure 1
Diagram of ‘diamond isomorphism’ between factor groups FH=H and
F=F \H; where H is a normal subgroup of G.



of nonprimitive translations satisfying so-called Frobenius

congruences:

wðg; hÞ ¼ uGðgÞ þ guGðhÞ � uGðghÞ ¼ 0 ðmod TGÞ; g; h 2 G;

ð1Þ

w : G	G! TG is called a factor system.

The symbol for G represents the set of Euclidean operators

(isometries) with Seitz symbols fgjtþ uGðgÞgP where g runs

through the point group G and t through the translation

subgroup TG.

Of particular interest is a trivial solution hs : G! V to the

Frobenius congruences, hsðgÞ ¼ s� gs, g 2 G, s 2 V. Conju-

gation of individual elements of G by a shift fejsg gives one

fejsgfgjtþ uGðgÞgPfej �sg ¼ fgjtþ uGðgÞ þ s� gsgP:

Therefore, if hsðgÞ ¼ s� gs 6¼ 0 ðmod TGÞ for some g 2 G,

one obtains another Euclidean group fejsgGfej �sg ¼ GðsÞ,

GðsÞ ¼ fG;TG;P; uG þ hsg ¼ fG;TG;Pþ s; uGg: ð2Þ

The shift s is interpreted in Volume A1 of ITC as the shift of

origin. However, it should be interpreted as the shift of the

group itself. Indeed, comparison of expressions for the two

groups shows that the group GðsÞ is described with respect to

the origin Pþ s in the same manner as the group G with

respect to the origin P (for example, by the group diagram).

5. Presentation of a reducible G-invariant translation
group TG

Let us observe that, apart from point groups of the cubic

family, all other crystallographic point groups are reducible.

Denote by a, b and c conventional crystallographic basis

vectors. In order to avoid ambiguity we stipulate the following:

(i) with the rhombohedral space groups the hexagonal basis

will be used instead of the rhombohedral one; (ii) with the

monoclinic family we will use ‘unique axis c’. Provided that a

point group G belongs to the tetragonal or hexagonal family,

the Euclidean vector space V will be decomposed into a direct

sum of two mutually orthogonal G-invariant subspaces,

V ¼ Vða; bÞ 
 VðcÞ; ð3Þ

where a subspace Vða; bÞ is spanned by the vectors a and b,

and VðcÞ is spanned by c. In the case where a point group G

belongs to the triclinic, monoclinic or orthorhombic family,

one can express the space V as a direct sum of three

G-invariant subspaces,

V ¼ VðaÞ 
 VðbÞ 
 VðcÞ: ð4Þ

In either case, the space V is reducible under the action of G.

One also refers to the point group G and the respective

crystallographic family as reducible.

Consider now a reducible point group G and the decom-

position of V into a direct sum Vða; bÞ 
 VðcÞ of G-invariant

subspaces (apart from the triclinic case, those subspaces

are mutually orthogonal). We introduce projections

�1 : V�!Vða; bÞ and �2 : V�!VðcÞ of V onto its subspaces,

� ¼ �1ð�Þ þ �2ð�Þ for any � 2 V. As intersections of a

G-invariant translation group TG with the subspaces of V one

gets G-invariant direct summands of TG: a two-dimensional

TG1 ¼ TG \ Vða; bÞ and a one-dimensional TG2 ¼ TG \ VðcÞ.

For either summand there exists a complementary direct

summand of TG (not necessarily a G-invariant one), say T 0G2

for TG1 and T 0G1 for TG2,

TG ¼ TG1 
 T 0G2 ¼ T 0G1 
 TG2� TG1 
 TG2;

where either T 0G2 6� VðcÞ and T 0G1 6� Vða; bÞ, or T 0G2 ¼ TG2 and

T 0G1 ¼ TG1. Projecting the group TG with �1 and �2 into the

space V one obtains G-invariant discrete translation groups

�1ðTGÞ ¼ To
G1 � TG1 and �2ðTGÞ ¼ To

G2 � TG2. It follows that

To
G1 
 To

G2 � TG � TG1 
 TG2: ð5Þ

The group TG either splits into a direct sum of TG1 and TG2

(To
G1 ¼ TG1, To

G2 ¼ TG2),

TG ¼ TG1 
 TG2; ð6Þ

or equals a subdirect sum of G-invariant groups To
G1 and To

G2,

in which case three factor groups TG=ðTG1 
 TG2Þ, To
G1=TG1

and To
G2=TG2 are isomorphic (Hall, 1959). Each factor group is

an additive group formed by the respective p cosets given

below.

TG ¼ ðTG1 
 TG2Þ [ ðd2 þ ðTG1 
 TG2ÞÞ

[ . . . [ ðdp þ ðTG1 
 TG2ÞÞ

¼ ðTG1 
 TG2Þ½0 [ d2 [ . . . [ dp� ðd1 ¼ 0Þ; ð7Þ

where dj þ ðTG1
TG2Þ¼fdj þ t; t2TG1
TG2g, j2f1; . . . ; pg,

and

�1ðTGÞ ¼ To
G1 ¼ TG1 [ ðd12 þ TG1Þ [ . . . [ ðd1p þ TG1Þ

¼ TG1½0 [ d12 [ . . . [ d1p�;

�2ðTGÞ ¼ To
G2 ¼ TG2 [ ðd22 þ TG2Þ [ . . . [ ðd2p þ TG2Þ

¼ TG2½0 [ d22 [ . . . [ d2p�;

with d1j ¼ �1ðdjÞ, d2j ¼ �2ðdjÞ, j ¼ 1; . . . ; p. Cosets add

following the common rule, e.g. ðdj þ ðTG1 
 TG2ÞÞ þ

ðdk þ ðTG1 
 TG2ÞÞ ¼ dl þ ðTG1 
 TG2Þ, dj þ dk � dl 2 TG1


TG2, j; k ¼ 1; . . . ; p. The last expressions of the three equa-

tions above are symbolic abbreviations which will be used

henceforth. The isomorphisms between three factor groups,

TG=ðTG1 
 TG2Þ $ To
G1=TG1 $ To

G2=TG2, are given by

dj þ ðTG1 
 TG2Þ $ d1j þ TG1 $ d2j þ TG2; j ¼ 1; . . . ; p:

ð8Þ

The case of a direct sum [equation (6)] corresponds to

primitive lattices [note that the rhombohedral lattice R is not

primitive in terms of the hexagonal basis used (see above)] as

well as to a C-centered orthorhombic lattice, while a subdirect

sum [equation (7)] will appear for other centered lattices, in

which case the vectors dj represent the centering vectors.

Definition 5.1. Consider a reducible point group G and a

G-invariant translation group TG. The presentation of TG in

the form of a G-invariant direct sum [equation (6)] is called

decomposition while the presentation of TG in the form of a
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subdirect sum [equation (7)] of two G-invariant groups is

called reduction.

Decomposability and reducibility of discrete translation

groups under the action of point groups are properties of the

respective Bravais types. All such decompositions and

reductions in dimensions 2 and 3 have been considered by

Kopský (1993) and Fuksa & Kopský (1993).

6. Factorization of reducible space groups by direct
summands of TG

Consider a space group G ¼ fG;TG;P; uGg belonging to a

reducible crystallographic family; one refers to G as a

reducible space group. The G-invariant direct summands

TG1 ¼ TG \ Vða; bÞ and TG2 ¼ TG \ VðcÞ of TG (see x5) will

then appear as normal subgroups of G. The following theorem

identifies the factor groups G=TG1 and G=TG2.

Theorem 6.1. Factorization theorem. Suppose G ¼ fG;TG;
P; uGg is a reducible space group. Then the factor group G=TG2

is isomorphic to a layer group

L ¼ fG;To
G1;P; uG1g;

while the factor group G=TG1 is isomorphic to a rod group

R ¼ fG;To
G2;P; uG2g:

Systems of non-primitive translations uG1 : G! Vða; bÞ and

uG2 : G! VðcÞ are given by uG1ðgÞ ¼ �1ðuGðgÞÞ and uG2ðgÞ ¼

�2ðuGðgÞÞ for all g 2 G.

Proof: The symbols for L and R are symbols of Euclidean

groups because they satisfy all conditions of the fundamental

theorem. In particular, the systems of nonprimitive transla-

tions uG1 : G! Vða; bÞ and uG2 : G! VðcÞ satisfy Frobenius

congruences modulo To
G1 and To

G2, respectively, since such

Frobenius congruences arise as respective projections of the

Frobenius congruences for the original system uG : G! V. In

the case where TG ¼ TG1 
 TG2, the factor groups TG=TG2 and

TG=TG1 are isomorphic to TG1 and TG2, respectively; such facts

will be indicated by writing TG=TG2 ’ TG1 and TG=TG1 ’ TG2.

Then any coset of the factor groups G=TG2 and G=TG1 will

be of the form fgjt1 þ uGðgÞgPTG2, t1 2 TG1, g 2 G and

fgjt2 þ uGðgÞgPTG1, t2 2 TG2, g 2 G, respectively. The iso-

morphisms G=TG2 ! L and G=TG1 !R are as follows:

fgjt1 þ uGðgÞgPTG2�!fgjt1 þ uG1ðgÞgP 2 L; t1 2 TG1; g 2 G;

ð9Þ

fgjt2 þ uGðgÞgPTG1�!fgjt2 þ uG2ðgÞgP 2 R; t2 2 TG2; g 2 G:

ð10Þ

In the case where TG is a subdirect sum [equation (7)] it

follows that T=TG2 ’ TG1½0 [ d2 [ . . . [ dp� and T=TG1 ’

TG2½0 [ d2 [ . . . [ dp�. Then the isomorphisms (9) and (10)

change to

fgjt1 þ
Pp

j¼2

zjdj þ uGðgÞgPTG2�!fgjt1 þ
Pp

j¼2

zjd1j þ uG1ðgÞgP 2 L;

ð11Þ

fgjt2 þ
Pp

j¼2

zjdj þ uGðgÞgPTG1�!fgjt2 þ
Pp

j¼2

zjd2j þ uG2ðgÞgP 2 R;

ð12Þ

where t1 2 TG1, t2 2 TG2, zj 2 f0; 1g, dj ¼ d1j þ d2j 2 TG, d1j 2

To
G1; d2j 2 To

G2; j¼ 2; . . . ; p; and g 2 G. Using Theorem 3.1,

one directly obtains the following corollary.

Corollary 6.1. Lattices of subgroups of rod and layer groups as

quotients of reducible space groups. The lattice LðLÞ of

subgroups of the layer group L is lattice isomorphic to the

quotient LðG; TG2Þ of the lattice LðGÞ of subgroups of the

reducible space group G, and the lattice LðRÞ of subgroups

of the rod group R is lattice isomorphic to the quotient

LðG; TG1Þ.

7. Illustrative examples

The factorization theorem assigns to a reducible space group

G � ðG;TGÞ a pair ðL;RÞ composed of a layer group

L � ðG;To
G1Þ and a rod group R � ðG;To

G2Þ (Kopský, 1993;

Fuksa & Kopský, 1993). In the case when TG is a direct sum

[equation (6)], the right-hand sides of (9) and (10) imply that

the group G can be viewed as a result of the Schreier multi-

plication (Kopský, 2001) L 
 R of the two subperiodic groups

(cf. Table 1). Otherwise [cf. the right-hand sides of equations

(11), (12)], the same pair may correspond to two space groups

(Fuksa & Kopský, 1993; for an excerpt see Table 2). In both

the tables space groups are denoted by Hermann–Mauguin

symbols equipped with a Schoenflies superscript at the upper

left.

As the first example we present the decomposition table for

an arithmetic class 4=mmmP (cf. Table 1). In the jth column

heading we give a rod group Rj, j 2 f1; 2; 3; 4g, of the class

4=mmmp, while in the ith row heading we give a layer group

L
i, i 2 f1; 2; 3; 4g, of the class 4=mmmp. At the intersection of

the ith row with the jth column there is a space group
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Table 1
Decomposition of space groups of arithmetic class 4=mmmP by pairs of
layer and rod groups.

4=mmmP p4=mmm p4=mcc p42=mmc p42=mcm

p4=mmm 1P4=mmm 2P4=mcc 9P42=mmc 10P42=mcm

p4=nbm 3P4=nbm 4P4=nnc 11P42=nbc 12P42=nnm

p4=mbm 5P4=mbm 6P4=mnc 13P42=mbc 14P42=mnm

p4=nmm 7P4=nmm 8P4=ncc 15P42=nmc 16P42=ncm

Table 2
Factorization of space groups of arithmetic class 4=mmmI.

4=mmmI p1=24=mmm p1=242=mmc

p̂p4=mmm
17I4=mmm

—18I4=mcm

p̂p4=nbm —
19I41=amd
20I41=acd



G
ði;jÞ, i; j ¼ 1; 2; 3; 4, Gði;jÞ ’ Li


 R
j. Underlined in Table 1

is an example of the space group 4P4=nnc ’ p4=nbm


 p4=mcc where Lð4P4=nnc; TðcÞÞ ’ Lðp4=nbmÞ and

Lð4P4=nnc; Tða; bÞÞ ’ Lðp4=mccÞ. Each row and each

column of Table 1 implies four lattice isomorphisms, e.g.

the third row yields Lðp4=mbmÞ’Lð5P4=mbm; TðcÞÞ’ . . . ’
Lð14

P42=mnm; TðcÞÞ while the fourth column reads

Lðp42=mmcÞ ’ Lð10
P42=mcm; Tða;bÞÞ ’ . . . ’ Lð16

P42=ncm;
Tða; bÞÞ.

The beauty of such a system is, unfortunately, marred by the

choice of origins of the space groups. The exact form of the

tables should contain respective shifts of space groups to

correlate them with the choice of the origins of layer and rod

groups.

As the second example we give factorization of an arith-

metic class 4=mmmI (cf. Table 2) where p ¼ 2. Vectors

a; b; d2 ¼ ðaþ bþ cÞ=2 form a primitive basis for a volume

centered tetragonal lattice TG ¼ TI. As direct summands

complementary to TG1 ¼ Tða; bÞ and TG2 ¼ TðcÞ one can take

e.g. T 0G2 ¼ Tðd2Þ and T 0G1 ¼ Tða; d2Þ, respectively. By p̂p we

denote the two-dimensional primitive square translation

group To
G1 ¼ Tðd12 ¼ ðaþ bÞ=2; ð�aþ bÞ=2Þ, and by p1=2 the

one-dimensional group To
G2 ¼ Tðd22 ¼ c=2Þ. Like Table 1, rod

groups of the class 4=mmmp are given in the column headings,

while layer groups of the class 4=mmmp are given in the row

headings. In contrast to Table 1, some table entries are

empty. Table 2 implies Lðp̂p4=mmmÞ ’ Lð17I4=mmm; TðcÞÞ ’

Lð18I4=mcm; TðcÞÞ or Lðp1=242=mmcÞ ’ Lð19I41=amd; Tða; bÞÞ

’ Lð20
I41=acd; Tða; bÞÞ.

As the third example we consider a space group

Pca21 ’ pma2 
 pcm21. The same layer or rod group

appears for space groups Pma2 ’ pma2 
 pmm2 and

Pcm21 ’ pmm2 
 pcm21. Isomorphisms of the infinite quoti-

ents of LðPca21Þ and LðPcm21Þ with the lattice Lðpcm21Þ,

LðPca21; Tða; bÞÞ ’ LðPcm21; Tða; bÞÞ ’ Lðpcm21Þ, are illu-

strated on finite quotient sublattices LðPca21; Tða; b; 4cÞÞ ’

LðPcm21; Tða; b; 4cÞÞ ’ Lðpcm21; Tð4cÞÞ (see Figs. 2 and 3).

The three triclinic groups 1. P1 shown there (from above) are

Tða; b; cÞ;Tða; b; 2cÞ and Tða; b; 4cÞ. One gets the quotient

Lðpcm21; Tð4cÞÞ from Fig. 3 just by substituting TðcÞ, Tð2cÞ,

Tð4cÞ for Tða; b; cÞ, Tða; b; 2cÞ, Tða; b; 4cÞ, respectively, and p
for P. Isomorphisms of the infinite quotients of LðPca21Þ

and LðPma2Þ with the lattice Lðpma2Þ, LðPca21; TðcÞÞ

’ LðPma2; TðcÞÞ ’ Lðpma2Þ, are illustrated on finite

quotients LðPca21; Tðaþ b;�aþ b; cÞÞ ’ LðPma2; Tðaþ b;
�aþ b; cÞÞ ’ Lðpma2; Tðaþ b;�aþ bÞÞ (see Figs. 4 and 5).

The two triclinic groups 1. P1 shown there (from above)

are Tða; b; cÞ, Tðaþ b;�aþ b; cÞ. The quotient Lð pma2;
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Figure 3
Quotient sublattice LðPcm21; Tða; b; 4cÞÞ ’ Lðpcm21; Tð4cÞÞ.

Figure 2
Quotient sublattice LðPca21; Tða; b; 4cÞÞ ’ Lðpcm21; Tð4cÞÞ.

Figure 4
Quotient sublattice LðPca21; Tðaþ b;�aþ b; cÞÞ ’ Lðpma2; Tðaþ b;�aþ bÞÞ.



Tðaþ b;�aþ bÞÞ is obtained from Fig. 5 simply by replacing

Tða; b; cÞ;Tðaþ b;�aþ b; cÞ in the corresponding order,

with Tða; bÞ;Tðaþ b;�aþ bÞ, and P;C with p; c; respec-

tively. Note that in each pair of translationally equivalent

subgroups appearing on both Figs. 4 and 5, the one on the right

is shifted with respect to that on the left [according to equation

(2)] by �a=2.

8. Concluding remarks

It is shown that for any reducible space group G the lattice

LðGÞ of its subgroups contains a copy of the lattice LðRÞ of

subgroups of a rod group R as well as a copy of the lattice

LðLÞ of subgroups of a layer group L. Those relationships can

facilitate the determination of space-group subgroups, or can

serve as an additional check of the subgroups found.
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Figure 5
Quotient sublattice LðPma2; Tðaþ b;�aþ b; cÞÞ ’ Lðpma2; Tðaþ b; �aþ bÞÞ.
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